CHAPTER 3

Multigrid Approaches to the
Euler Equations
P. W. HEMKER AND G. M. JOHNSON

3.1. Introduction. In this chapter we give a survey of the present state
of the art for multigrid solution of the Euler equations for inviscid
compressible flow. This is an example of a branch of multigrid research in
which a thorough mathematical basis is still missing. What does exist to
guide applications is an abundance of heuristic arguments and analogues
from areas with better theoretical foundations, yet there is a scarcity of solid
theory to account for the convergence speed and efficiency shown in
practice. Such theory as there is lags well behind both practical development
and the excellent results that have already been obtained with multigrid
Euler solvers applied to large scale problems.

We chose to restrict our discussion in this chapter to the Euler equations
because there are a few visible lines of development that can easily be treated
within the scope of this chapter. Much interesting work has also been
done in the general field of compressible and incompressible Navier—Stokes
equations (cf. the pioneering work by Brandt [92], [95], [99], [105]), but the
state of the art in this area is changing too rapidly to be suitable for
discussion here. We refer the reader instead to the literature for other fluid
flow applications. In particular, the KWIC index to the Multigrid Bibliog-
raphy included in Appendix 2 of this book lists a collection of papers on the
compressible and incompressible Navier equations, potential flow, and the
Stokes equations.

Because even the multigrid Euler-solver discipline is continually chang-
ing, in this chapter we adopt the perspective of an overview rather than one
of prescription and detailed guidance. We hope that this overview and the
cited references will prepare the reader for further studies in this advancing
field.

The efficient solution of flow problems was one of the early aims in the
applications of multigrid (MG) methods [86]. However, in recent years most
of the progress in the development of MG has been made in the field of
elliptic partial differential equations and other fields where a solid mathe-
matical theory exists (e.g., integral equations). For the inherently more
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complex equations that describe flow problems, the theoretical development
of MG did not proceed at the same pace. Early numerical work was done by
Brandt [99], [105] and South and Brandt [524], where, for example, the
Stokes equations and the incompressible and compressible Navier—Stokes
equations were considered.

On the other hand, triggered by practical interest from the engineering
sciences, several attempts have been made to apply MG ideas to improving
the efficiency of flow computations. If the flow is assumed to be irrotational,
then it can best be described by the potential equation, which—in the
interesting case of transonic flow—is of mixed hyperbolic and elliptic type.
By the use of MG, substantial improvements were made in the procedures
for solving these equations [70], [123], [297], [382], [439], [524]. When the
assumption of irrotational flow is dropped, an exact description of inviscid
flow is given by the Euler equations. When the physical effects of viscosity
and heat conduction are also included, these equations extend to the
Navier—Stokes equations. Models of turbulence can also be included in the
Navier-Stokes equations.

In this chapter we will treat several multiple grid approaches that are used
for the solution of the equations of compressible flow. We restrict ourselves
to problems in 2 space dimensions. Almost all techniques discussed here can
be applied in 3-D as well, but the burden of 3-D notation makes the
description unattractive. Also, in practice, most codes are written for 2-D
problems because the complexity of 3-D computations and the computa-
tional requirements for their implementation are at the limit of present-day
computer capabilities. The advent of more powerful computers will cer-
tainly change this situation in the near future.

Although practical problems that arise in the aircraft and turbomachinery
industries are often described by the compressible Navier—Stokes equations,
we shall consider mainly the Euler equations of inviscid flow. The reason for
this is the assumption that a good method for the solution of the Euler
equations may be extended to those situations where viscosity plays a
significant role.

In those cases where the solution of the Euler equations can be used as a
first approximation to the solution of the full Navier-Stokes equations, it
may be a convenient approach to compute (an approximation to) this Euler
flow first. This approximation can then be corrected for viscous effects.
Most simply, this is done by a defect correction approach [66], where the
solution of the Navier-Stokes equations is found by an iterative process in
which only Euler-type equations are (approximately) solved and the heat
conduction and viscous Navier—Stokes terms are taken care of by adding the
corresponding corrections as forcing terms. In practice, a simple method to
realize such an iterative process for the solution of the Navier—Stokes

equation is to neglect the extra Navier-Stokes terms at particular stages of
the solution process.
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3.1.1. The equations. The 2-D Navier—Stokes equations, describing
the physical laws of conservation of mass, momentum and energy, can be
written in conservation form as
3
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Here p, u, v, e and p, respectively, represent density, velocity in x- and
y-direction, specific energy and pressure; H=e+p/p is the specific
enthalpy. The pressure is obtained from the equation of state, which for a
perfect gas reads

p=(r—1ple—3(u>+v?);
y is the ratio of specific heats. g(¢, x, y) describes the state of the gas as a
function of time and space and f and g are the convective fluxes in the x-
and y-direction, respectively. Re and Pr denote the Reynolds and Prandtl

numbers; thermal conductivity is given by k; ¢ = Vyp/p is the local speed of
sound; and

T = (A+2uu, + vy, 1, =u(u, +v,), 1, =(A4+2u),+ Au,

where A and p are viscosity coefficients. Stokes assumption of zero bulk
viscosity may reduce the number of coefficients by one: 34 +2u =0.

We denote the open domain of definition of (1.1) by Q*.

The Euler equations are obtained from (1.1a) by neglecting viscous and
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heat conduction effects:

(1.1c) F(g)=f(@q), G(q)=g(q)

The time-dependent Euler equations form a hyperbolic system: written in
the quasi-linear form

3
_q_+fl.§g+§_g_.§ﬂ=0,
8t 9q Ax Jdq Jy

the matrix

3 3
(1.2) kA +sz=kla—£+k,_5§
has real eigenvalues for all directions (k,, k,). These eigenvalues are
(kyu+ kyv)+c¢ and (kyu + k,v) (a double eigenvalue). The sign of the
eigenvalues determines the direction in which the information about the
solution is carried along the line (k,, k,) as time develops (i.e., it
determines the direction of flow of characteristic information). It locates the
direction of the domain of dependence.

It is well known that, because of the nonlinearity, solutions of the Euler
equations may develop discontinuities, even if the initial flow (t=1;) is
smooth. To allow discontinuous solutions, (1.1) is rewritten in its integral
form

(1.3) é[fqd‘xdy+j (f-n.+g-n)ds=0 forall QcQ*;
ot g a9

0% is the boundary of Q and (x,, n,) is the outward normal vector at the
wall 8Q.

The form (1.3) of equation (1.1) shows clearly the character of the system
of conservation laws: the increase of g in € can be caused only by the inflow
of g over 8Q. In symbolic form we write (1.3) as

(1.4) q.+N(q)=0.

The solution of the weak form (1.3) of (l.1a,c) is known to be
nonunique, and a physically realistic solution (which is the limit of a flow
with vanishing viscosity) is known to satisfy the additional entropy condition
(cf. [Lal], [La2]). The entropy condition implies that characteristics do not
emerge at a discontinuity in the flow.

The steady state equations are obtained by the assumption 3q/dt=0.
Guided by the defect correction principle and knowing how the viscous
effects change the governing equations, for the Navier—Stokes equations
with large Reynolds number we can concentrate on the solution methods for
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the stationary Euler equations
(1.5) N(q) =0.

3.1.2. The discretizations. For the discretization of (1.1) or (1.3), two
different approaches can be taken. First, the time and space discretizations
can be made at once. This leads, for example, to discretization schemes of
Lax—Wendroff type. An initial state of the fluid q¢,,, defined on a discrete
grid, is advanced over one time step. Using a second order approximation in
time yields

(1.6) Qlnery = qlm + ALG"): + 3(AD* (")
With the equation (1.1a, c), we arrive at

a§ V=g — At(f +8,); + %(Af)z{[A(fx +g). + [B(f +gy)1y}.z
y
where A and B are defined by (1.2). Using various difference approximations
of the bracketed terms in the right-hand side, we may obtain different
Lax—Wendroff type discretizations.

This type of discretization is usually made on a rectangular grid. If the
domain Q* is not rectangular, a 1-1-mapping (x, y)«<—(§, ) between the
physical domain and a rectangular computational domain can be con-
structed. Then the differential equation and the boundary conditions are
reformulated on this computational domain.

A property of most of these Lax—Wendroff discretizations is that, when
by time stepping a stationary state is obtained such that gf,.+1)= (s, the
discrete stationary state still depends on At. This is caused by the fact that
the discrete term with (Af)? in (1.6) in general does not vanish.

A second approach is to distinguish clearly between the time and the
space discretization by the method of lines. First, a space discretization is
made for the partial differential equation (1.4) by which it is reduced to the
large system of ordinary differential equations

(1.7 gtq" = N*(¢").

Now, to find an approximation of the time-dependent solution of (1.4), any
method can be used for the integration of this system of ordinary differential
equations. The solution of the steady state can be computed by solving (1.7)
until the transients have died out. Alternatively, we can avoid the ordinary
differential equations (1.7) and solve the nonlinear system

(1.8) N"(g")=0

by other (more direct) means. In both cases (1.7) and (1.8), we find a steady
approximate solution q” independent of the choice of a time step.
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For the construction of the semi-discrete system (1.7) or (1.8) on a
nonrectangular domain Q*, a mapping (x, y)«—(§, n) can again be
introduced and finite difference approximations (of arbitrarily high order)
can be used to construct a space discretization of the transformed steady
equation

[, F(q) —x,G(Q)]s + [-y:F(q) +x:G(q)], =0.

Another way to construct system (1.7) on a nonrectangular grid is by a finite
volume technique. Here, the starting point for the discretization is (1.3).
Without an a priori transformation, the domain Q* is divided into a set of
disjoint quadrilateral cells ;. The discrete representation q" of q is given
by the values gq;, the (mean) values of q in the cell Q;. Using different
approximations for the computation of fluxes between the cells Q;, we
obtain various finite volume discretizations. We can easily obtain a
conservative scheme by computing a unique approximation for each flux
over the boundary between two neighboring cells.

In order to define a proper sequence of discretizations as h—0 for a
nonrectangular grid, a formal relation between the vertices of cells Q;; and a
regular grid can be given, again by a mapping (x, y)<—(&, n). If this
mapping is smooth enough, it can be proved that, for refinements 41— 0
corresponding to regular refinements in (£, ), space discretizations up to
second order can be obtained. An advantage of the finite volume technique
is that the untransformed equations can be used, even for a complex region.
Boundary condition information is also usually simpler for finite volume
methods.

With the finite volume technique, both central difference and upwind type
finite volume schemes are used. They differ by the computation of the flux
between neighboring cells €2;:

(1) For a central difference type, the flux over a cell wall I';, between
two cells with states g, and gg is computed as 3f*(q,) + 3f*(qr), where
f*=k,f +k,g is the flux normal to I'; . On a Cartesian grid this scheme
reduces to the usual central difference scheme. In order to stabilize this
scheme, and to prevent the uncoupling of odd and even cells in the grid, it is
necessary to supplement the scheme with some kind of artificial dissipation
(artificial viscosity).

(2) For upwind difference type discretizations, numerical flux functions
f*(q., gr) are introduced to compute the flux over ', z. Several functions
f* are possible. They solve approximately the Riemann problem of gas
dynamics: they approximate the flux between two (initially) uniform states
q. and gg. Approximate Riemann solvers have been proposed by Steger
and Warming [St1], van Leer [Val], Roe [Rol], and Osher [Osl1], [Os2]. A
description of these upwind schemes and their properties can be found in
the cited literature. For a consistent scheme, f*(q, q) =f*(q), i.e., the
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numerical flux function with equal arguments conforms with the genuine
flux function in (1.1c). All these upwind flux functions are purely one-sided
if all characteristics point in the same direction, i.e., f*(qr, qr) =f*(q.) if
the flow of all information is from left to right.

3.1.3. The multiple grid methods. When a multiple grid technique is
used to solve the system of nonlinear (differential) equations (1.7) or (1.8),
we assume the existence of a nested set of grids. Usually this nesting is such
that a set of 2 X 2 cells in a fine mesh forms a single cell in the next coarser
one. (No staggered grids!) The coarser grids are used to effect the
acceleration of a basic iterative (time marching or relaxation) procedure on
the finest grid.

Slightly generalizing equations (1.7) and (1.8) to

é h __ h h h
(1-9) S a =N(a) -7
and
(1.10) N (") =r",

where r" denotes a possible correction or forcing term, we can write the
basic iterative procedure as

(1.11) q" <J"q", ™).

Generally, for a nonlinear equation this will be a nonlinear operation (e.g.,
a nonlinear Gauss—Seidel relaxation scheme).

The usual coarse grid acceleration algorithm is as follows: with an
approximation g, on the finest mesh, and some approximation g, on the
next coarser one (e.g., gi)=I3"qt:,), first an approximate solution g{}) is

found for the coarse grid problem

(1.12) N(q*) = N*(qi)) — I*(N*(gley) = "),
and then the value g{y, is updated by
(1.13) Gl = 9o + 13:(q0) — 910))-

Notice that [2* is a restriction operator similar to 1;*; the difference is that
I?* works on approximate solutions q" (the state of the flow), whereas b4
works on residuals (rates of change of the flow). The difference is not only
formal: in the simplest case I3" takes the mean value of states in a set of
cells, but [?" performs a summation of rates of change over a set of cells.
The combination of (1.12) and (1.13) is a coarse grid correction (CGC).
The solution g% of (1.12) can be approximated, e.g., by an (accelerated)
iteration process on the 2k-grid again. As for linear problems, by the
recursive application of this idea we can form V-cycles or u-cycles.
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We will see in §3.2 that the coarser grids sometimes play a role in the
acceleration process that is different than the one we have just described
[316], [474].

The nonlinear multigrid cycle (also called the FAS-cycle)

q" < FASL(q", ")
for the solution of (1.10) now consists of the following steps:

Step 0: Start with an approximate solution g".

Step 1: Improve g by application of v, nonlinear (pre-) relaxation
iterations (1.11) to N*(q*) =r".

Step 2: If the present grid is the coarsest, go to Step 4. Otherwise
improve ¢” by application of a coarse grid correction, where the
approximation of (1.12) is effected by u FAS-cycles to this
coarser grid problem; that is, compute

r** —N*(qio) — IR (N"(¢") = ),
and perform p times
q*" < FASZ(q™, r™).

Step 3: q" —q" + I5(q*" — q16)).
Step 4: Improve g* by application of v, nonlinear (post-) relaxation
iterations to N*(q") =r".

Again, the case with u=1 is called a V-cycle; u =2 yields a W-cycle. A
V-cycle with v, + v, =1 is called a sawtooth cycle.

3.2. Methods based on Lax—~Wendroff type time stepping. Ni [428] was
among the first to apply an MG acceleration to the (isenthalpic) Euler
equations. He uses the following time stepping procedure as a basic
iteration. Starting with an initial state g{,), where the values g{ are given at
the grid points, he first computes the following quantities by means of a
control volume centered integration method with fluxes interpolated from
corner values:

1 At
i’A‘; [(Fi+1,j - F,,) + (Fi+1,j+l - Fi,j+1)]

Aqi+1/2,j+1/2 ==

(2.1) _1Ar

EA_y [(Gi.j+1 - Gi,j) + (Gi+1,}' - Gi+1,j+1)],

F;=F(qf"), etc.
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These increments are then distributed over the mesh points using direction-
weighted means (cell increments are distributed over mesh point values):

1 At
Ag;= 2 12 > [1 —k Kx-Ai-f-k/z,j-H/Z

=x1k=x%1

(2.2) At
- IZ)‘) Bi+k/2,j+l/2] AGiiknjrir

95" =qif’ + Mgy,
By way of the Jacobian matrices A and B, this distribution formula has an
upwinding effect, but for transonic or supersonic cases an artificial damping
is still necessary.
Symbolically, this time stepping process (2.1)—(2.2) is described as
follows:

(2.32) compute AgqZ,,
with cell values Aqi+1/2,j+1/2 =~ —At (J‘aQHIfZ.,HI: (f‘)’lx + g ‘n_v) dS)/(AX . Ay),
(2.3b) q?n+l)<_q,(1n) + D" Agl.

The operator D" is the distribution operator that transfers the cell centered
corrections to the grid points by means of (2.2).

The coarse grid acceleration as introduced in [428] by Ni deviates from
the canonical coarse grid scheme (1.12), (1.13). In [428] the coarse grid
correction is obtained by first computing corrections at coarser cells, Ag2%,.
This can be done by restriction of Ag” to the 2h-grid. Then the corrections
Agq?t, are distributed to the coarser meshpoints as in (2.2), and the coarse
grid correction is interpolated to the fine grid. Thus, here the coarse grid
correction reads

(2.42) Aqggn I} Agle,
(2.4b) 4?n+1)<—qf'n) + IghDZh qugn’

where %, is a (bi-) linear interpolation operator. Since the coarse grid
corrections are based on fine grid residuals, it is obvious that the possible
convergence to a steady state yields a solution of the system (1.8).

In the same way the correction procedure can be repeated on progres-
sively coarser grids. Therefore, in (2.4), 2k should be replaced by 2*h. We
notice that the corrections on the different levels may be made independ-
ently of each other. This makes it possible to compute all coarse grid
corrections, k =1, - - -, m, in parallel and to form the correction

m

k 2kp

Q?n+1) = Q?n) + 2 1’21“th g Agcen
k=1

at once [541]. When optimal use of modern multi-processor computers is
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made, it is also possible to perform both computations (2.3a) and (2.4) in
parallel [320], [541].

We see that it is still possible to form different variants of the Ni-type
multigrid Euler solver. First, any other Lax—Wendroff type time-marching
procedure can be used for (2.3a). In [134], [314], [318] Johnson applies the
popular MacCormack scheme. Further, in (2.4a) various restrictions, 2,
can be used. Equation (2.4a) transfers the values of the fine grid corrections
to a single value for each control volume in the coarser grid. Injection of the
correction to the corresponding point of the coarse grid cell is often used
[316], but weighted averages are also an obvious choice.

Heuristically, the coarse grid corrections in (2.4) have an accelerating
effect because they may move disturbances of the steady state over the
distance of many mesh cells in one time step. Apparently, the Lax-—
Wendroff schemes used in combination with this coarse grid correction must
be sufficiently dissipative to reduce the high frequency disturbances present
in the initial approximation or introduced by linear interpolation. One way
to do this is to make a careful choice of At. Until now, no complete
mathematical theory has been developed to explain or quantify the amount
of acceleration clearly found in the use of this approach.

As an alternative to (2.2), where Jacobians are used to form the
correction, Johnson [315] introduced a correction that is based on ex-
trapolation (in time) of the computed fluxes.

3.3. Methods based on semidiscretization and time stepping. When
only the solution of the steady state is to be computed, the time-accurate
integration of the system of ordinary differential equations is wasteful. The
convergence of (1.4) to steady state is slow. However, there may be several
reasons to prefer time stepping methods, such as the desire to have a
procedure that solves transient as well as steady state problems, coding
convenience, or the restrictions imposed by the optimal use of vector
computers. When no time accuracy is desired, many devices are known to
accelerate the integration process (cf. [305]). For the solution of the Euler
equations, these devices include: (i) local time stepping, which means that
the step size in the integration process may differ over different parts of the
domain Q*; (ii) enthalpy damping, where a priori knowledge about the
behavior of the enthalpy over Q* is used (e.g., H constant over Q*); (iii)
residual smoothing; and (iv) implicit residual averaging, which uses the fact
that instability effects appear first for high frequencies, so that larger time
steps are possible when the residual is smooth.

For all explicit integration methods, stability requirements set a limit on
the size of the possible time steps (CFL limits). Implicit integration
procedures can be unconditionally stable, but they require the solution of a
nonlinear system at each individual time step.
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An important code based on a time stepping method has been developed
by Jameson, Schmidt and Turkel [305]. They use an explicit time stepping
method of Runge—Kutta type. This ruultistage time stepping procedure is a
specially adapted Runge~Kutta method, where the hyperbolic (convective)
and the parabolic (dissipative) parts of N*(g") are treated separately. The
Runge-Kutta coefficients in the k-stage Runge-Kutta schemes (k =3, 4)
are selected not only for their large stability bounds, but also with the aim
of improving the damping of the high frequency modes. In the k stages of
the Runge—Kutta process, the updating of the dissipative part is frozen at
the first stage. This saves a substantial part of the computational effort.

The multigrid scheme used by Jameson [300] is an FAS sawtooth cycle
with v, = 1. The restriction 12"([%") is defined by volume-weighted averaging
of the states (summation of changes of states, respectively). The prolonga-
tion 1%, is defined by bilinear interpolation. The basic smoothing procedure
is the “multistage time stepping scheme.” On the coarser grids the stability
bounds for the time step, which are O(h), allow larger time steps. On each
grid the time step is varied locally to yield a fixed Courant number, and the
same Courant number is used on all grids, so that progressively larger time
steps are used after each transfer to a coarser grid. As for Ni’s method, the
reasoning is that disturbances from the steady state will be more rapidly
expelled from the domain Q* by the larger time steps. The interpolation of
corrections back to the fine grid introduces high frequency errors, which
cannot be rapidly expelled. These errors should be locally damped. Hence,
to obtain a fast rate of convergence, the time stepping process should
rapidly damp the high frequency errors.

In [311] Jespersen announced an interesting theorem on the use of the
MG process in combination with a time stepping procedure. This theorem
asserts the following. Let I” (resp. [") be defined as a restriction operator
from the continuous state space (resp. space of rates of change) to its
discrete equivalent’ on Q”, and let I, be a prolongation operator that
interpolates states on Q" to states on Q. Let N"(q")=0 be a space
discretization of N(q) =0 which is consistent, i.e.,

N"(I*(q)) - I"N(g) = O(h),
and let the time stepping procedure be consistent in time, i.e.,
Glns1y = qlny + At [N*(q(m) = "] + O((AL(a))?).

If we consider the sawtooth algorithm, with v, =1, v,=0, u=1, and if I,
and I" satisfy an approximation property (i.e., for a smooth function g the
prolongation and restriction in the state space are such that [,I"q —q=
O(h)), then the MG algorithm on m grids is a consistent, first order in time,
discretization of (1.4) with time step Aty = Y,_1 ... . At;.

In a sense this theorem formalizes the heuristic reasoning that on coarser
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grids the deviations from steady state can be expelled faster by the use of
larger time steps. This may suggest that more, say v>1, steps on the
coarser grids would further improve the convergence. However, the
theorem addresses consistency; stability is not considered. Hence, in the
same paper [311] Jespersen shows by an example that convergence is lost
when a large number of relaxations is made on the coarse grid. In fact, a
strong stability condition of the form Az/Ax < O(v™') seems to appear.

3.4. Fully implicit methods. Most methods considered so far are based
on the concept of integrating the equations (1.4) in time until a steady state
is reached. If we are only interested in a possible solution of the steady state
equation (1.5) and assume that this solution is unique, we may disregard the
time-dependence completely. Further, assuming that a suitable space
discretization takes into account the proper directions of dependence in Q*,
we can restrict ourselves simply to the solution of the nonlinear system (1.8)
or

(1.10) N*(q")=r".

Also, if the time-dependent system (1.9) is solved by means of an implicit
time stepping method in order to circumvent the stability bounds on At, we
have to solve systems (1.10) at each time step. Using these implicit solution
methods and giving up time accuracy for (1.10) means that there is little or
no difference between these time stepping procedures and (nonlinear)
relaxation methods for (1.10).

If we start with the nonlinear system (1.10), two direct MG approaches
can be used. We can either apply the nonlinear multiple grid algorithm
(FAS) directly to the system (1.10), or we may apply linearization
(Newton’s method) and use the linear version of multiple grid (CS) for the
solution of the resulting linear systems. Jespersen [310] gives an extensive
recital of the (dis)advantages of both approaches. Both have been used with
success for the Euler equations.

Linearization and CS have been used by Jespersen [309] and Mulder
[423]; the nonlinear FAS procedure is used by Steger [528], Jespersen [309],
and Hemker and Spekreijse [274], [275].

In all of these papers upwind discretizations have been used. In [309],
[528] the Steger—-Warming scheme is used; [423] uses the differentiable van
Leer flux splitting method; [274], [275] use Osher’s flux difference splitting.
In [150] Dick also considers Roe’s flux difference splitting for the 1-D Euler
equations.

When Newton’s method is applied for linearization, it may be difficult to
start in the domain of contraction of the iteration. Therefore, Mulder [423]
introduces the so-called Switched Evolution Relaxation (SER) scheme,
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which is a chimera of a forward Euler time stepping and a Newton method:
1 3
(4.1) [EI_a—'th(q?n)):l(q?n+l)—q?n))=Nh(qzln))'

For At— 0, this gives the simple time stepping procedure; for At— o, (3.1)
is equivalent to Newton’s method. In the actual computation At varies,
depending on the size of the residual, such that (3.1) is initially a time
stepping procedure and becomes Newton’s method in the final stages of the
solution process.

In an FAS procedure, a natural way to obtain an initial estimate is of
course to use full multigrid (FMG) [97]. The initial estimate is obtained by
interpolation from the approximate solution on the coarser grid(s). For
many problems this process gives very good results, even if one starts with
rough approximations on every coarse grid.

34.1. A nested sequence of Galerkin discretizations. When (1.3) is
discretized by a finite volume method, and if a conservative first order
upwind (or a central difference) discretization is used as described in §3.1, it
can be shown [275] that with a particularly simple restriction [%* and
prolongation 1%, the coarse discrete operator N** is a Galerkin approxima-
tion to the fine grid discretization N*. With I, the piecewise constant
interpolation over cells, and I?" the summation of the residual over fine
mesh cells to form a residual on the corresponding coarse cell, the following
relation holds:

4.2) N*(g*™) = I*"N"(I3:97").

This formula has an interesting implication for a coarse grid correction that
is constructed by means of these operators. If the coarse grid correction
(1.12), (1.13) transforms the approximation g, into g”, the residual of §"
satisfies

(4.3) B — N @M= I(N*g" = N*I5l3q") = (N"§" = NI5.13°3")]-
For a smooth operator N*, this implies
B - NMg)= 019" — §"11)-
This means that the restriction of the residual mainly contains high
frequency components. As is the case with common elliptic problems, it is

the task of the relaxation method to efficiently damp these highly oscillating
residuals.
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3.4.2. Relaxation methods. Clearly, whether a sequence of Galerkin
approximations is used or not, the important featu_re of a r@{axation method
in a multiple grid context (both CS and FAS) is its capa}nhty to damp the
high frequency components in the error (or in the residual). Therefore,
the difference scheme should be sufficiently dissipative as first order upwind
schemes usually are. An advantage of these schemes over central differences
is that this numerical dissipation is well defined and independent of an
artificial parameter for the added dissipation necessary for the central
difference schemes. The lack of differentiability of the numerical flux
function may create a problem, but some differentiable flux functions are
now available [528], [Os1], [Os2], [Val].

Both in the linearized (CS) and in the nonlinear (FAS) application,
well-known and simple relaxation procedures such as Gauss-Seidel (GS),
symmetric Gauss—Seidel (SGS) and line Gauss-Seidel (LGS) are reported
to work well when applied to the discrete Euler equations. (All of these
relaxation methods are used in their “collective” version, i.e., the 3 or 4
variables corresponding to a single point or cell are relaxed simultaneously.)
The smoothing behavior of these relaxations can be analyzed by local mode
analysis. Here we should notice that the smoothing factor, as used for
common elliptic problems, has no significant meaning for the Euler
equation because we have to take into account characteristic (unstable)
modes. A local mode analysis should follow more along the lines used for
singularly perturbed elliptic problems (cf. e.g. [328]). Jespersen [309] has
published some results in this regard. He shows that for a subsonic and
supersonic case, SGS has a reasonably good smoothing behavior when
applied to a first order scheme. Of course, the nonsymmetric GS relaxation
is only effective if the direction of the relaxation sufficiently conforms with
the direction of the characteristics. If we study plots of reduction factors of
Fourier components (spectral radii, or norms for the error or residual
amplification operator), e.g., when SGS is applied to the Euler equations,
we see that two SGS sweeps are usually sufficient for a significant reduction
of the high frequencies (Hemker, unpublished results). For second order
schemes the smoothing rates are not satisfactory.

Van Leer and Mulder published a study [Va2] where several relaxation
schemes (GS, LGS, ZEBRA, point Jacobi, line Jacobi, ADI, AF) were
compared when applied to the linearized isenthalpic Euler equations.

3.43. Higher order schemes. When both first and second order
upwind schemes are studied, the best MG performance is found for the first
order discretizations. This can be explained by the fact that first order
upwind schemes are more dissipative and hence more able to damp high
frequencies. As first order schemes may not be accurate enough for
practical computations and, moreover, have the unpleasant property of
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TaBLE 3.1
Fully implicit multiple grid approaches.
Discretization

scheme MG Relaxation
Steger Steger—Warming FAS AF
(1981) Finite differences
Jespersen Steger—Warming FAS/CS SGS, GS
(1983) Finite differences
Mulder van Leer CS SGS
(1984) Finite differences
Hemker and Osher FAS SGS, Damped Jacobi
Spekreijse Finite volumes Nested Galerkin
(1985)

smearing out skew discontinuities, second order schemes are highly
desirable.

Beside the possibility of applying the MG acceleration directly to the
second order scheme—with the unwanted effect of slowing the convergence
rate—another possibility exists. Starting with a first approximation, we can
improve the accuracy by the defect correction iteration [66], [271], [525]

(44) N?(q?n+l)) = N’;(q?n)) - Ng(q?n))

Here N;, p=1,2, denotes the pth order discretization. A theorem [225]
has shown that for smooth solutions a single correction step (3.4) is
sufficient to obtain the higher order of accuracy. Also, for solutions with
discontinuities (where the formal order of convergence has no practical
meaning), it is shown in [271] that one or a few steps (3.4) improve the
accuracy of the solution significantly.

In Table 3.1 we summarize the several attempts to solve the steady Euler
equations by an MG method with implicit relaxation. It is our opinion that
the recent methods of this class are the most robust and efficient ones
for solving the steady Euler equations. The development in the last few
years has led to a significant improvement of the algorithms. However, the
fully implicit methods have a rather complex structure and are not directly
suited for vector computers. Furthermore, at the moment there is much less
practical experience with these methods than, e.g., with Jameson’s
multistage time stepping procedure or the commonly used Beam—Warming
[Bel] algorithm.
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